no estas solo o sola en el mundo. si te ha gustado un articulo, compártelo, envialo a las Redes Sociales, facebook, twitter

La actividad agropecuaria es la actividad productiva más antigua de la humanidad; este simple hecho implica que es el sector que ha experimentado el mayor número de políticas públicas.

martes, diciembre 27, 2005

HASTA CUANDO SENADOR PIZARRO....

¿HASTA CUANDO VAMOS A SOPORTAR AL SENADOR PIZARRO QUE DENOSTE LA ACTIVIDAD AGRÍCOLA Y SUS EMPRESARIOS ?
La decisión del Senador Pizarro de censurar e increpar por los medios al Senador Romero , eso de hablar de “ patrones de fundo”… , en fin ya estamos hartos. Porque los agricultores son empresarios igual que cualquier otro y porque habrían de tener esos estigmas que les atribuyen a los agricultores tal como “Patrón de Fundo” tan usado por este Senador.
Bueno sería que el Senador Pizarro definiera lo que es para él un “ patrón de fundo” y ver si los patrones de fundo están en la posición de otros sujetos públicos que ha analizado “transparencia internacional”.
Lávese la boca señor Pizarro antes de siquiera pronunciar las palabras “Patrón de fundo” No se olvide que estos patrones de fundo son los que le han dado a ud de que comer, han sido pilares fundamentales del crecimiento de Chile , son fuente importante de trabajo a lo largo de Chile, entonces córtela con los peyorativos, que cada cierto tiempo nos obliga a escuchar.
Bueno sería que las autoridades de la SNA, de una vez por todas aclararan estos intentos de denostar la actividad agrícola empresarial mediante estos peyorativos “ patrón de fundo”. He sido patrón de fundo por más de 30 años y no acepto el calificativo y el contexto que lo ubica el senador Pizarro pretendiendo denostar una noble actividad .
¿O los agricultores de Chile están muy contentos con que este Senador los intente denostar, menoscabar, denigrar con calificativos y circunstancias extraños? ¿Cuantos patrones de fundo hay en la Cámara de Diputados y en el Senado, y en el propio gobierno ? Yo conozco a varios . agriculturablogger.blogspot.com

Saludos
Rodrigo González Fernández, agriculturablogger.blogspot.com

martes, diciembre 20, 2005

BIOTECNOLOGIA Y OMG

Declaración de la Sociedad Española de Genética (SEG) sobre biotecnología
1. Las diversas técnicas incluidas bajo el nombre de Biotecnología son la consecuencia lógica de los descubrimientos científicos realizados a lo largo del siglo XX. La SEG tiene total autoridad para entender en ello desde los fundamentos hasta las aplicaciones prácticas en todo lo que concierne a la constitución y modificación genética de los organismos.
2. Dichos descubrimientos y las técnicas derivadas han permitido un avance extraordinario en la comprensión del mecanismo hereditario, con repercusiones de enorme alcance científico en todas las ramas de la Biología. De forma colateral, la aplicación de dichas técnicas ha exigido asimismo desarrollos en instrumentación y en computación sin semejanza alguna con lo sucedido en épocas anteriores.
3. Entre las aplicaciones de las nuevas técnicas se encuentra la posibilidad de alterar directamente la información hereditaria por medio de la modificación directa de la sustancia que la codifica (ADN), lo que ha permitido un conocimiento sin precedentes sobre la estructura del mensaje genético y aplicaciones de enorme valor en Medicina, Industria y Agricultura.
4. Parte de tales aplicaciones consisten en la obtención de los llamados "organismos modificados genéticamente (OMG)", expresión que, desde un punto de vista legal, se refiere solamente a los conseguidos mediante modificación directa del ADN, aun cuando todos los organismos obtenidos por cualquier tipo de selección son, con toda propiedad, organismos modificados genéticamente.
5. En los OMG, el cambio genético es mínimo, controlado y dirigido, a diferencia de lo que ocurre en los procesos anteriores de Mejora genética, en que se combina una cantidad ilimitada de información genética procedente de orígenes diversos.
6. Los OMG han permitido la aparición en el mercado de nuevas medicinas y productos industriales plenamente admitidos por el consumidor. No ocurre lo mismo, sin embargo, con la obtención de animales experimentales como modelos de patologías humanas, ni con la llamada "terapia genética", ni con nuevas variedades de plantas cultivadas.
7. La SEG defiende que la obtención y experimentación con estos nuevos materiales es absolutamente necesaria para el avance en los campos básicos y aplicados correspondientes.
8. La SEG admite que la aplicación práctica, en Medicina y Agricultura, debe seguir a un periodo de ensayos que garantice su valor frente a otros productos y su respeto por el ambiente con objeto de eliminar la inquietud social detectada, pero que deben eliminarse conceptos tales como "conseguir la ausencia de riesgo" puesto que no existe el "riesgo cero" en ningún fenómeno natural.
9. La SEG afirma que los únicos informes que permiten garantizar lo dicho en el apartado anterior proceden del campo experimental, siendo los científicos especialistas en los diferentes campos los que deben establecer los mínimos admisibles. Cuando, en estas condiciones, la experimentación indique que el organismo obtenido es plenamente aceptable, no debe existir ningún otro motivo de exclusión.
10. Hasta el momento, los productos farmacéuticos, industriales y vegetales admitidos por la Unión Europea han pasado todas las pruebas exigidas y no existe riesgo para su uso por el hombre, debiendo seguirse en el futuro el sistema ya establecido de que las pruebas se realicen caso a caso y paso a paso. Otro tipo de riesgos, como las exigencias de demostración de "inocuidad a largo plazo", han de ser definidos para su estudio de forma no discriminatoria respecto a lo exigido para otros productos producidos por el hombre.
11 Las posibles connotaciones socio-económicas, como el predominio de grandes compañías privadas en las aplicaciones biotecnológicas, deben separarse de lo que es aplicación del conocimiento científico para beneficio de la sociedad.
12. La SEG considera que la investigación es una cuestión de Estado a la que no se le presta el debido interés, lo que evidentemente disminuye la contribución española al avance de la ciencia y de la técnica y hace perder la oportunidad de contribuir en los foros de opinión internacionales.
bIOTECNOLOGIAS Y omg, DESDE ESPAÑA, SALUDOS RODRIGO GONZÁLEZ FERNANDEZ AGRICULTURABLOGGER.BLOGSPOT.COM

miércoles, diciembre 14, 2005

GLOBALIZACION Y CREC

GLOBALIZACION Y CRECIMIENTO DESDE EUROPA:

Resulta irónico que, en cierto modo, Marx fuese un premonitor del capitalismo global. ¿Se equivocó Marx o se equivocaron los marxistas?.
Hace unos 150 años Marx y Engels predijeron que en lugar de la vieja reclusión local y nacional y de la autosuficiencia, tendremos interacciones en todas las direcciones, una interdependencia universal de las naciones. Han demostrado estar en lo cierto; desde la segunda mitad del siglo XX al menos la tendencia hacia la globalización no se ha roto. Y también en el futuro las naciones más industrializadas y las que están en desarrollo se abrirán más al comercio internacional.
Las economías abiertas son más exitosas
Juan Carlos Rodíguez comenta un estudio que ha publicado el Deutsche Bank Research sobre  la relación entre globalización y crecimiento económico, Opening economies succeed. More trade boosts growth (pdf). Como comenta Juan Carlos, el título resume maginificamente la principal conclusión del trabajo, que la apertura al exterior favorece el crecimiento económico.
El artículo realiza un análisis econométrico de la historia (de 1870 hasta nuestros días) de la relación entre apertura exterior y crecimiento para diferentes países, y demuestra como los periodos de mayor avance en la globalización han sido acompañados de un importante desarrollo
El blog de Juan Freire es uno de los mejores de habla hispana. Ya lo hemos dicho antes y digno de tenerlo a mano y leerlo
Mas información:
http://nomada.blogs.com/jfreire/globalizacin/index.html

Globalización y crecimiento: Un saludo a todos Y EN ESPECIAL A Juan Freire , Rodrigo González Fernández  CONSULTAJURIDICA.BLOGSPOT.COM



lunes, diciembre 12, 2005

FREQUENTLY ASKED QUE





        

FREQUENTLY ASKED QUESTIONS
ABOUT BIOTECHNOLOGY
FROM USDA.

  1. What is Agricultural Biotechnology?

Agricultural biotechnology is a range of tools, including traditional breeding techniques, that alter living organisms, or parts of organisms, to make or modify products; improve plants or animals; or develop microorganisms for specific agricultural uses. Modern biotechnology today includes the tools of genetic engineering.

2. How is Agricultural Biotechnology being used?

Biotechnology provides farmers with tools that can make production cheaper and more manageable. For example, some biotechnology crops can be engineered to tolerate specific herbicides, which makes weed control simpler and more efficient. Other crops have been engineered to be resistant to specific plant diseases and insect pests, which can make pest control more reliable and effective, and/or can decrease the use of synthetic pesticides. These crop production options can help countries keep pace with demands for food while reducing production costs. A number of biotechnology-derived crops that have been deregulated by the USDA and reviewed for food safety by the Food and Drug Administration (FDA) and/or the Environmental Protection Agency (EPA) have been adopted by growers.

Many other types of crops are now in the research and development stages. While it is not possible to know exactly which will come to fruition, certainly biotechnology will have highly varied uses for agriculture in the future. Advances in biotechnology may provide consumers with foods that are nutritionally-enriched or longer-lasting, or that contain lower levels of certain naturally occurring toxicants present in some food plants. Developers are using biotechnology to try to reduce saturated fats in cooking oils, reduce allergens in foods, and increase disease-fighting nutrients in foods. They are also researching ways to use genetically engineered crops in the production of new medicines, which may lead to a new plant-made pharmaceutical industry that could reduce the costs of production using a sustainable resource.

Genetically engineered plants are also being developed for a purpose known as phytoremediation in which the plants detoxify pollutants in the soil or absorb and accumulate polluting substances out of the soil so that the plants may be harvested and disposed of safely. In either case the result is improved soil quality at a polluted site. Biotechnology may also be used to conserve natural resources, enable animals to more effectively use nutrients present in feed, decrease nutrient runoff into rivers and bays, and help meet the increasing world food and land demands. Researchers are at work to produce hardier crops that will flourish in even the harshest environments and that will require less fuel, labor, fertilizer, and water, helping to decrease the pressures on land and wildlife habitats.

In addition to genetically engineered crops, biotechnology has helped make other improvements in agriculture not involving plants. Examples of such advances include making antibiotic production more efficient through microbial fermentation and producing new animal vaccines through genetic engineering for diseases such as foot and mouth disease and rabies.

3. What are the benefits of Agricultural Biotechnology?

The application of biotechnology in agriculture has resulted in benefits to farmers, producers, and consumers. Biotechnology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against disease.

For example, genetically engineered insect-resistant cotton has allowed for a significant reduction in the use of persistent, synthetic pesticides that may contaminate groundwater and the environment

In terms of improved weed control, herbicide-tolerant soybeans, cotton, and corn enable the use of reduced-risk herbicides that break down more quickly in soil and are non-toxic to wildlife and humans. Herbicide-tolerant crops are particularly compatible with no-till or reduced tillage agriculture systems that help preserve topsoil from erosion.

Agricultural biotechnology has been used to protect crops from devastating diseases. The papaya ringspot virus threatened to derail the Hawaiian papaya industry until papayas resistant to the disease were developed through genetic engineering. This saved the U.S. papaya industry. Research on potatoes, squash, tomatoes, and other crops continues in a similar manner to provide resistance to viral diseases that otherwise are very difficult to control.

Biotech crops can make farming more profitable by increasing crop quality and may in some cases increase yields. The use of some of these crops can simplify work and improve safety for farmers. This allows farmers to spend less of their time managing their crops and more time on other profitable activities.

Biotech crops may provide enhanced quality traits such as increased levels of beta-carotene in rice to aid in reducing vitamin A deficiencies and improved oil compositions in canola, soybean, and corn. Crops with the ability to grow in salty soils or better withstand drought conditions are also in the works.

The tools of agricultural biotechnology have been invaluable for researchers in helping to understand the basic biology of living organisms. For example, scientists recently identified the complete genetic structure of several strains of Listeria and Campylobacter, the bacteria often responsible for major outbreaks of food-borne illness in people. This genetic information is providing a wealth of opportunities that help researchers improve the safety of our food supply. The tools of biotechnology have "unlocked doors" and are also helping in the development of improved animal and plant varieties, both those produced by conventional means as well as those produced through genetic engineering.

4. What are the safety considerations with Agricultural Biotechnology?

Breeders have been evaluating new products developed through agricultural biotechnology for centuries. In addition to these efforts, the United States Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) work to ensure that crops produced through genetic engineering for commercial use are properly tested and studied to make sure they pose no significant risk to consumers or the environment.

Crops produced through genetic engineering are the only ones formally reviewed to assess the potential for transfer of novel traits to wild relatives. When new traits are genetically engineered into a crop, the new plants are evaluated to ensure that they do not have characteristics of weeds. Where biotech crops are grown in proximity to related plants, the potential for the two plants to exchange traits via pollen must be evaluated before release. Crop plants of all kinds can exchange traits with their close wild relatives (which may be weeds or wildflowers) when they are in proximity. In the case of biotech-derived crops, the EPA and USDA perform risk assessments to evaluate this possibility and minimize potential harmful consequences, if any.

Other potential risks considered in the assessment of genetically engineered organisms include any environmental effects on birds, mammals, insects, worms, and other organisms, especially in the case of insect or disease resistance traits. This is why the USDA's Animal and Plant Health Inspection Service (APHIS) and the EPA review any environmental impacts of such pest-resistant biotechnology derived crops prior to approval of field-testing and commercial release. Testing on many types of organisms such as honeybees, other beneficial insects, earthworms, and fish is performed to ensure that there are no unintended consequences associated with these crops.

With respect to food safety, when new traits introduced to biotech-derived plants are examined by the EPA and the FDA, the proteins produced by these traits are studied for their potential toxicity and potential to cause an allergic response. Tests designed to examine the heat and digestive stability of these proteins, as well as their similarity to known allergenic proteins, are completed prior to entry into the food or feed supply.

To put these considerations in perspective, it is useful to note that while the particular biotech traits being used are often new to crops in that they often do not come from plants (many are from bacteria and viruses), the same basic types of traits often can be found naturally in most plants. These basic traits, like insect and disease resistance, have allowed plants to survive and evolve over time.

5. How widely used are biotechnology crops?

According to the USDA's National Agricultural Statistics Service (NASS), biotechnology plantings as a percentage of total crop plantings in the United States in 2004 were about 46 percent for corn, 76 percent for cotton, and 85 percent for soybeans. NASS conducts an agricultural survey in all states in June of each year. The report issued from the survey contains a section specific to the major biotechnology derived field crops and provides additional detail on biotechnology plantings. The most recent report may be viewed at the following website: http://usda.mannlib.cornell.edu/reports/nassr/field/pcp-bba

For a summary of these data, see the USDA Economic Research Service data feature at: http://www.ers.usda.gov/Data/BiotechCrops/

The USDA does not maintain data on international usage of genetically engineered crops. The independent International Service for the Acquisition of Agri-biotech Applications (ISAAA), a not-for-profit organization, estimates that the global area of biotech crops for 2004 was 81.0 million hectares, grown by 8.25 million farmers in 17 countries - a significant increase over 2003 when 67.7 million hectares were grown by 7.0 million farmers in 18 countries. The 2004 increase of 13.3 million hectares is the second highest annual increase of biotech crops on record. ISAAA reports various statistics on the global adoption and plantings of biotechnology derived crops. The ISAAA website is http://www.isaaa.org

6. What are the roles of government in agricultural biotechnology?

Please note: These descriptions are not a complete or thorough review of all the activities of these agencies with respect to agricultural biotechnology and are intended as general introductory materials only. For additional information please see the relevant agency websites.

Regulatory

The Federal Government developed a Coordinated Framework for the Regulation of Biotechnology in 1986 to provide for the regulatory oversight of organisms derived through genetic engineering. The three principal agencies that have provided primary guidance to the experimental testing, approval, and eventual commercial release of these organisms to date are the USDA's Animal and Plant Health Inspection Service (APHIS), the Environmental Protection Agency (EPA), and the Department of Health and Human Services' Food and Drug Administration (FDA). The approach taken in the Coordinated Framework is grounded in the judgment of the National Academy of Sciences that the potential risks associated with these organisms fall into the same general categories as those created by traditionally bred organisms.

Products are regulated according to their intended use, with some products being regulated under more than one agency. All government regulatory agencies have a responsibility to ensure that the implementation of regulatory decisions, including approval of field tests and eventual deregulation of approved biotech crops, does not adversely impact human health or the environment.

The Animal and Plant Health Inspection Service (APHIS) is responsible for protecting U.S. agriculture from pests and diseases. APHIS regulations provide procedures for obtaining a permit or for providing notification prior to "introducing" (the act of introducing includes any movement into or through the U.S., or release into the environment outside an area of physical confinement) a regulated article in the U.S. Regulated articles are organisms and products altered or produced through genetic engineering that are plant pests or for which there is reason to believe are plant pests.

The regulations also provide for a petition process for the determination of nonregulated status. Once a determination of nonregulated status has been made, the organism (and its offspring) no longer requires APHIS review for movement or release in the U.S.

For more information on the regulatory responsibilities of the EPA and the FDA please see:

http://usbiotechreg.nbii.gov/roles.asp

http://www.fda.gov

http://www.epa.gov

Market Facilitation

The USDA also helps industry respond to consumer demands in the United States and overseas by supporting the marketing of a wide range of agricultural products produced through conventional, organic, and genetically engineered means.

The Agricultural Marketing Service (AMS) and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) have developed a number of services to facilitate the strategic marketing of conventional and genetically engineered foods, fibers, grains, and oilseeds in both domestic and international markets. GIPSA provides these services for the bulk grain and oilseed markets while AMS provides the services for food commodities such as fruits and vegetables, as well as for fiber commodities.

These services include:

1. Evaluation of Test Kits: AMS and GIPSA evaluate commercially available test kits designed to detect the presence of specific proteins in genetically engineered agricultural commodities. The agencies confirm whether the tests operate in accordance with manufacturers' claims and, if the kits operate as stated, the results are made available to the public on their respective websites.

GIPSA Link: http://151.121.3.117/biotech/rapidtest.htm

AMS Link: http://www.ams.usda.gov/science/TSB/Biotechnology.htm

2. Proficiency Program: GIPSA evaluates the performance of laboratories conducting DNA-based tests to detect genetically engineered grains and oilseeds, provides participants with their individual results, and posts a summary report on the GIPSA website. AMS is developing a similar program that can evaluate and verify the capabilities of independent laboratories to screen other products for the presence of genetically engineered material.

3. Identity Preservation/Process Verification Services: AMS and GIPSA offer auditing services to certify the use of written quality practices and/or production processes by producers who differentiate their commodities using identity preservation, testing, and product branding.

GIPSA Link: http://151.121.3.117/programsfgis/inspwgh/pvp/pvp.htm

AMS Link: http://www.ams.usda.gov/fv/ipbv.htm

Additional AMS Services: AMS provides fee-based DNA and protein testing services for food and fiber products, and its Plant Variety Protection Office offers intellectual property rights protection for new genetically engineered seed varieties through the issuance of Certificates of Protection.

Additional GIPSA Services: GIPSA provides marketing documents pertaining to whether there are genetically engineered varieties of certain bulk commodities in commercial production in the United States.

USDA also works to improve and expand market access for U.S. agricultural products, including those produced through genetic engineering. The Foreign Agricultural Service (FAS) supports or administers numerous education, outreach, and exchange programs designed to improve the understanding and acceptance of genetically engineered agricultural products worldwide.

1. Market Access Program and Foreign Market Development Program: Supports U.S. farm producer groups (called "Cooperators") to market agricultural products overseas, including those produced using genetic engineering.

2. Emerging Markets Program: Supports technical assistance activities to promote exports of U.S. agricultural commodities and products to emerging markets, including those produced using genetic engineering. Activities to support science-based decision-making are also undertaken. Such activities have included food safety training in Mexico, a biotechnology course for emerging market participants at Michigan State University, farmer-to-farmer workshops in the Philippines and Honduras, high-level policy discussions within the Asia-Pacific Economic Cooperation group, as well as numerous study tours and workshops involving journalists, regulators, and policy-makers.

3. Cochran Fellowship Program: Supports short-term training in biotechnology and genetic engineering. Over the past several years, the program has provided education and training to over 200 international participants, primarily regulators, policy makers, and scientists.

4. Technical Assistance for Specialty Crops (TASC): Supports technical assistance activities that address sanitary, phytosanitary, and technical barriers that prohibit or threaten the export of U.S. specialty crops. This program has supported activities on biotech papaya.

Research

USDA researchers seek to solve major agricultural problems and to better understand the basic biology of agriculture. Researchers may use biotechnology to conduct research more efficiently and to discover things that may not be possible by more conventional means. This includes introducing new or improved traits in plants, animals, and microorganisms and creating new biotechnology-based products such as more effective diagnostic tests, improved vaccines, and better antibiotics. Any USDA research involving the development of new biotechnology products includes biosafety analysis.

USDA scientists are also improving biotechnology tools for ever safer, more effective use of biotechnology by all researchers. For example, better models are being developed to evaluate genetically engineered organisms and to reduce allergens in foods.

USDA researchers monitor for potential environmental problems such as insect pests becoming resistant to Bt, a substance that certain crops, such as corn and cotton, have been genetically engineered to produce to protect against insect damage. In addition, in partnership with the Agricultural Research Service (ARS) and the Forest Service, the Cooperative States Research, Education, and Extension Service (CSREES) administers the Biotechnology Risk Assessment Research Grants Program (BRAG) which develops science-based information regarding the safety of introducing genetically engineered plants, animals, and microorganisms. Lists of biotechnology research projects can be found at http://ars.usda.gov/research/projects.htm for ARS and at http://www.csrees.usda.gov/funding/brag/brag.html for CSREES.

USDA also develops and supports centralized websites that provide access to genetic resources and genomic information about agricultural species. Making these databases easily accessible is crucial for researchers around the world.

USDA'S Cooperative State Research, Education and Extension Service (CSREES) provides funding and program leadership for extramural research, higher education, and extension activities in food and agricultural biotechnology. CSREES administers and manages funds for biotechnology through a variety of competitive and cooperative grants programs. The National Research Initiative (NRI) Competitive Grants Program, the largest CSREES competitive program, supports basic and applied research projects and integrated research, education, and/or extension projects, many of which use or develop biotechnology tools, approaches, and products. The Small Business Innovation Research Program (SBIR) funds competitive grants to support research by qualified small businesses on advanced concepts related to scientific problems and opportunities in agriculture, including development of biotechnology-derived products. CSREES also supports research involving biotechnology and biotechnology-derived products through cooperative funding programs in conjunction with state agricultural experiment stations at land-grant universities. CSREES partners with other federal agencies through interagency competitive grant programs to fund agricultural and food research that uses or develops biotechnology and biotechnology tools such as metabolic engineering, microbial genome sequencing, and maize genome sequencing.

USDA's Economic Research Service (ERS) conducts research on the economic aspects of the use of genetically engineered organisms, including the rate of and reasons for adoption of biotechnology by farmers. ERS also addresses economic issues related to the marketing, labeling, and trading of biotechnology-derived products.
From USDA  , questions biotechnology, Rodrigo González Fernández biocombustibles.blogspot.com



  

  
    

  







Glossary of Agricult

Glossary of Agricultural Biotechnology Terms

  Note: These terms and definitions are intended for general educational purposes only. They are not intended to replace any definitions currently in use in any U.S. Government laws or regulations, nor are they legally binding on the actions of any Government agency. For specific definitions that apply to any law or regulation of any Government agency, please consult directly with that agency.

Agricultural Biotechnology: A range of tools, including traditional breeding techniques, that alter living organisms, or parts of organisms, to make or modify products; improve plants or animals; or develop microorganisms for specific agricultural uses. Modern biotechnology today includes the tools of genetic engineering.

Allergen: A substance, usually a protein, that can cause an allergy or allergic reaction in the body.

Allergy: A reaction by the body's immune system after exposure to a particular substance, often a protein.

Bacillus thuringiensis (Bt): A soil bacterium that produces toxins that are deadly to some pests. The ability to produce Bt toxins has been engineered into some crops. See Bt crops.

Biopharming: The production of pharmaceuticals such as edible vaccines and antibodies in plants or domestic animals.

Bt crops: Crops that are genetically engineered to carry a gene from the soil bacterium Bacillus thuringiensis (Bt). The bacterium produces proteins that are toxic to some pests but non-toxic to humans and other mammals. Crops containing the Bt gene are able to produce this toxin, thereby providing protection for the plant. Bt corn and Bt cotton are examples of commercially available Bt crops.

Chromosome: The self-replicating genetic structure of cells, containing genes, which determines inheritance of traits. Chemically, each chromosome is composed of proteins and a long molecule of DNA.

Clone: A genetic replica of an organism created without sexual reproduction.

Cross-pollination: Fertilization of a plant with pollen from another plant. Pollen may be transferred by wind, insects, other organisms, or humans.

DNA (deoxyribonucleic acid): The chemical substance from which genes are made. DNA is a long, double-stranded helical molecule made up of nucleotides which are themselves composed of sugars, phosphates, and derivatives of the four bases adenine (A), guanine (G), cytosine (C), and thymine (T). The sequence order of the four bases in the DNA strands determines the genetic information contained.

Enzyme-linked immunosorbent assay (ELISA): A technique using antibodies for detecting specific proteins. Used to test for the presence of a particular genetically engineered organism.

Field trial: A test of a new technique or variety, including biotech-derived varieties, done outside the laboratory but with specific requirements on location, plot size, methodology, etc.

Gene: The fundamental physical and functional unit of heredity. A gene is typically a specific segment of a chromosome and encodes a specific functional product (such as a protein or RNA molecule).

Gene expression: The result of the activity of a gene or genes which influence the biochemistry and physiology of an organism and may change its outward appearance.

Gene flow: The movement of genes from one individual or population to another genetically compatible individual or population.

Gene mapping: Determining the relative physical locations of genes on a chromosome. Useful for plant and animal breeding.

Gene (DNA) sequencing: Determining the exact sequence of nucleotide bases in a strand of DNA to better understand the behavior of a gene.

Genetic engineering: Manipulation of an organism's genes by introducing, eliminating or rearranging specific genes using the methods of modern molecular biology, particularly those techniques referred to as recombinant DNA techniques.

Genetically engineered organism (GEO): An organism produced through genetic engineering.

Genetic modification: The production of heritable improvements in plants or animals for specific uses, via either genetic engineering or other more traditional methods. Some countries other than the United States use this term to refer specifically to genetic engineering.

Genetically modified organism (GMO): An organism produced through genetic modification.

Genetics: The study of the patterns of inheritance of specific traits.

Genome: All the genetic material in all the chromosomes of a particular organism.

Genomics: The mapping and sequencing of genetic material in the DNA of a particular organism as well as the use of that information to better understand what genes do, how they are controlled, how they work together, and what their physical locations are on the chromosome.

Genomic library: A collection of biomolecules made from DNA fragments of a genome that represent the genetic information of an organism that can be propagated and then systematically screened for particular properties. The DNA may be derived from the genomic DNA of an organism or from DNA copies made from messenger RNA molecules. A computer-based collection of genetic information from these biomolecules can be a "virtual genomic library."

Genotype: The genetic identity of an individual. Genotype often is evident by outward characteristics, but may also be reflected in more subtle biochemical ways not visually evident.

Herbicide-tolerant crops: Crops that have been developed to survive application(s) of particular herbicides by the incorporation of certain gene(s) either through genetic engineering or traditional breeding methods. The genes allow the herbicides to be applied to the crop to provide effective weed control without damaging the crop itself.

Hybrid: The offspring of any cross between two organisms of different genotypes.

Identity preservation: The segregation of one crop type from another at every stage from production and processing to distribution. This process is usually performed through audits and site visits and provides independent third-party verification of the segregation.

Insecticide resistance: The development or selection of heritable traits (genes) in an insect population that allow individuals expressing the trait to survive in the presence of levels of an insecticide (biological or chemical control agent) that would otherwise debilitate or kill this species of insect. The presence of such resistant insects makes the insecticide less useful for managing pest populations.

Insect-resistance management: A strategy for delaying the development of pesticide resistance by maintaining a portion of the pest population in a refuge that is free from contact with the insecticide. For Bt crops this allows the insects feeding on the Bt toxin to mate with insects not exposed to the toxin produced in the plants.

Insect-resistant crops: Plants with the ability to withstand, deter or repel insects and thereby prevent them from feeding on the plant. The traits (genes) determining resistance may be selected by plant breeders through cross-pollination with other varieties of this crop or through the introduction of novel genes such as Bt genes through genetic engineering.

Intellectual property rights: The legal protection for inventions, including new technologies or new organisms (such as new plant varieties). The owner of these rights can control their use and earn the rewards for their use. This encourages further innovation and creativity for the benefit of us all. Intellectual property rights protection includes various types of patents, trademarks, and copyrights.

Molecular biology: The study of the structure and function of proteins and nucleic acids in biological systems.

Mutation: Any heritable change in DNA structure or sequence. The identification and incorporation of useful mutations has been essential for traditional crop breeding.

Nucleotide: A subunit of DNA or RNA consisting of a nitrogenous base (adenine, guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a phosphate molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). Many of nucleotides are linked to form a DNA or RNA molecule.

Organic agriculture: A concept and practice of agricultural production that focuses on production without the use of synthetic inputs and does not allow the use of transgenic organisms. USDA's National Organic Program has established a set of national standards for certified organic production which are available online.

Outcrossing: Mating between different populations or individuals of the same species that are not closely related. The term "outcrossing" can be used to describe unintended pollination by an outside source of the same crop during hybrid seed production.

Pest-resistant crops: Plants with the ability to withstand, deter or repel pests and thereby prevent them from damaging the plants. Plant pests may include insects, nematodes, fungi, viruses, bacteria, weeds, and other.

Pesticide resistance: The development or selection of heritable traits (genes) in a pest population that allow individuals expressing the trait to survive in the presence of levels of a pesticide (biological or chemical control agent) that would otherwise debilitate or kill this pest. The presence of such resistant pests makes the pesticide less useful for managing pest populations.

Phenotype: The visible and/or measurable characteristics of an organism (how it appears outwardly).

Plant breeding: The use of cross-pollination, selection, and certain other techniques involving crossing plants to produce varieties with particular desired characteristics (traits) that can be passed on to future plant generations.

Plant-incorporated protectants (PIPs): Pesticidal substances introduced into plants by genetic engineering that are produced and used by the plant to protect it from pests. The protein toxins of Bt are often used as PIPs in the formation of Bt crops.

Plant pests: Organisms that may directly or indirectly cause disease, spoilage, or damage to plants, plant parts or processed plant materials. Common examples include certain insects, mites, nematodes, fungi, molds, viruses, and bacteria.

Polymerase chain reaction (PCR): A technique used to create a large number of copies of a target DNA sequence of interest. One use of PCR is in the detection of DNA sequences that indicate the presence of a particular genetically engineered organism.

Promoter: A region of DNA that regulates the level of function of other genes.

Protein: A molecule composed of one or more chains of amino acids in a specific order. Proteins are required for the structure, function, and regulation of the body's cells, tissues, and organs, and each protein has a unique function.

Recombinant DNA (rDNA): A molecule of DNA formed by joining different DNA segments using recombinant DNA technology.

Recombinant DNA technology: Procedures used to join together DNA segments in a cell-free system (e.g. in a test tube outside living cells or organisms). Under appropriate conditions, a recombinant DNA molecule can be introduced into a cell and copy itself (replicate), either as an independent entity (autonomously) or as an integral part of a cellular chromosome.

Ribonucleic Acid (RNA): A chemical substance made up of nucleotides compound of sugars, phosphates, and derivatives of the four bases adenine (A), guanine (G), cytosine (C), and uracil (U). RNAs function in cells as messengers of information from DNA that are translated into protein or as molecules that have certain structural or catalytic functions in the synthesis of proteins. RNA is also the carrier of genetic information for certain viruses. RNAs may be single or double stranded.

Selectable marker: A gene, often encoding resistance to an antibiotic or an herbicide, introduced into a group of cells to allow identification of those cells that contain the gene of interest from the cells that do not. Selectable markers are used in genetic engineering to facilitate identification of cells that have incorporated another desirable trait that is not easy to identify in individual cells.

Selective breeding: Making deliberate crosses or matings of organisms so the offspring will have particular desired characteristics derived from one or both of the parents.

Traditional breeding: Modification of plants and animals through selective breeding. Practices used in traditional plant breeding may include aspects of biotechnology such as tissue culture and mutational breeding.

Transgene: A gene from one organism inserted into another organism by recombinant DNA techniques.

Transgenic organism: An organism resulting from the insertion of genetic material from another organism using recombinant DNA techniques.

Variety: A subdivision of a species for taxonomic classification also referred to as a 'cultivar.' A variety is a group of individual plants that is uniform, stable, and distinct genetically from other groups of individuals in the same species.

Vector: 1. A type of DNA element, such as a plasmid, or the genome of a bacteriophage, or virus, that is self-replicating and that can be used to transfer DNA segments into target cells. 2. An insect or other organism that provides a means of dispersal for a disease or parasite.

Desde FDA USA ,Un glosario de biotecnología . Rodrigo González Fernández agriculturablogger.blogspot.com

Investigadores britn

Investigadores británicos dasarrollan un 'superbrócoli' rico en sulforafano
7 de diciembre de 2005
Investigadores británicos del Instituto de Investigación de los Alimentos(IRF), están desarrollando una variedad de brócoli que puede contener más del triple de sulforafano respecto de los brócolis naturales. Este compuesto químico es un tipo de isotiocianato que tiene propiedades anticancerígenas. Según los investigadores, el brócoli parece proteger más frente al cáncer a las personas que presentan un gen denominado GSTM1 respecto de aquellas que no lo tienen, por lo que si consumieran este 'superbrócoli', estarían más protegidas, ya que el organismo retendría mayor cantidad de sulforafano por ser más concentrado. Esta sustancia también puede encontrarse en otras crucíferas como la coliflor, coles de bruselas, y nabos. Estos vegetales son ricos en glucosinolatos, los cuales son transformados por el organismo en isotiocianatos, uno de los más potentes compuestos anticancerígenos presentes en la dieta. Fuente: [Institute of Food Research]
Saludos Rodrigo González  agriculturablogger.blogspot.com

domingo, diciembre 11, 2005

UNA COMPAA NOS CONSU

UNA COMPAÑÍA NOS CONSULTA SOBRE LA NORMATIVA VIGENTE EN CHILE SOBRE BIOCOMBUSTIBLES  RENOVABLES

“ Biocombustibles” será la palabra del año 2006 en Chile. Para poder desarrollar esta industria en Chile es necesario una activa participación del Estado. Nosotros  hemos estado estudiando este tema con consultores Transnacionales.
Que mejor para Chile poder llegar a tener biocombustibles renovales de origen Agropecuario. Se imaginan la solución para los agricultores?
Entonces, invito a los agricultores a que unamos fuerzas en esta  nueva iniciativa.
Saludos Rodrigo González Fernández consultajuridica.blogspot.com

lunes, diciembre 05, 2005

DESALINIZACION DE AG


DESALINIZACION DE AGUAS  UNA APUESTA PARA EL DESIERTO CHILENO Y PRODUCCION DE PRIMORES PARA EL MUNDO
Hoy Lunes, 5 de Diciembre de 2005 en el blog salmón , al que estoy suscrito a sus informaciones, se hace un interesante comentario respecto a la desalinización de aguas. Me llama la atención que no figure nuestro país entre los países con inversiones en esa materia. Entonces, hay acá un nicho para invertir en nuestro Desierto. Creo que a Codelco le debería corresponde una acción en esta materia. Al gobierno en general, A LOS CANDIDATOS EN PARTICULAR DEBERÍA INTERESARLES  para habilitar el desierto a cultivos de primores, pudiendo licitar terrenos para proyectos interesantes a promover..
Veamos que se dice en Europa:
El negocio de la desalación  Por Alvaro Ojeda

Una de las cosas que siempre más me ha llamado la atención en el mundo de los negocios es la visión que han tenido determinados individuos para transformar una amenaza en oportunidad. Así, la continua sequía que ha padecido y sigue padeciendo la península ibérica ha sido y es la amenaza que un conjunto de compañías han transformado en oportunidad. Estamos hablando de las desaladoras.

En este momento y con más de 900 plantas en explotación, España ocupa el cuarto puesto mundial en capacidad de desalación por detrás de Arabia Saudita, los Emiratos Árabes Unidos y Estados Unidos. Además, y tal y como suele decir el director de Acuamed, Adrián Baltanás, la desalación, aunque salga más cara que el trasvase, no genera tensión territorial ni conflictos sociales. En efecto, nadie protesta porque en la costa mediterránea, se vayan a instalar más de 27 plantas de desalación de aquí a cuatro años.

Antonio García-Zarandieta, director de Inima, hoy filial de OHL, calcula que el negocio de la desalación va a movilizar a más de 2.500 millones de euros con las próximas licitaciones de India, Omán, Israel, el norte de África, Australia, China, Oriente Medio y América. Y según el libro blanco de la Agencia de la Energía de Australia, el incremento de la población en el mundo va a elevar dramáticamente las necesidades de agua potable hasta 5.000 kilómetros cúbicos anuales para el año 2025.

Con ese nivel de demanda, la desalación resulta una opción competitiva en aquellas áreas donde no exista ninguna otra opción (Argelia, por ejemplo); donde la población se acumula en las costas; donde resulte asumible su coste para los usuarios y allí donde, no reuniendo las condiciones anteriores, se consigan recursos financieros. Entre las primeras el Libro Blanco identifica al centro y sur de Asia; el norte, centro y sur de África, el oeste y sur de América y Australia. En la cuarta condición entrarían el suroeste de Norteamérica y muchas partes del norte y sur de Europa.
Para más información: http://www.elblogsalmon.com/archivos/2005/12/05-el-negocio-de-la-desalacion.php#more

Saludos Rodrigo González Fernández, consultajuridica.blogspot.com  mentorchile.blogspot.com  consultores